Studio Contrechoc

design & textile & technology entries

Category Archives: design

2017 Swatch “Inessential”

This swatch had  two sides: exploring an interesting possibility of carbon non woven, and also trying out another way of making different copies, this time using a text of Baudrillard. Is this personalisation?

YEAR OF INVENTION: 2017
CREDITS: Beam
DIMENSIONS: 150 x 110 mm

Jpeg

See http://etextile-summercamp.org/swatch-exchange/inessential/

Mass production:

mass_production.jpg

Advertisements

Discharging Victory over the Sun

Experimenting with the possibilities of Victory over the Sun, an unexpected paradox presented itself: gathering energy is not too dificult, but getting rid of this energy (for starting a new game) is not simple.

In the test version with a supercap of 1F a simple short cut was used. But in version 2 with a double supercap of 10F this seemed throwing away a lot of energy. And since the energy is the theme of this silhouet, just throwing it away seems not right.

So looking around for ways to use this energy the first idea was feeding it back into the lipo. But charging a lipo is a slow process. You don’t want to wait too long to start a new game. And also charging the battery that is running the system is … probably asking for problems.

Discharging by powering a ventilator is possible but making wind is not fitting in this silhouet. So the LED’s of the hacked Ljusa were chosen. The back of the silhouet already had lasercutted patterns. Inserting the LED’s and using a aluminum foil to make an inside reflecting surface gives a nice reward for all the work during the game. Since the supercaps are discharging the light effect are dimming. Because not only Ljusa bright LED’s were used but also red bicycle LED’s the light effect change because of the voltage drop.

The voltage drops from 5V to … 1V, so a MCP1702-3002 voltage regulator was used, limiting the voltage for the LED’s to 3V. This MCP is better than the voltage delimiter LD33V because this last one takes about 1V for itself, which makes discharging the low volts even more difficult.

Getting rid of the last volts is not solved yet. Discharging properly is not as easy as harvesting energy.

vs7

Light effect after winning the game.

vs8

 

 

Knitting the 2015 Swatch

At the coming e-textile summercamp the Swatches will be exchanged. The Swatch is a sample of small size showing some aspect of a combination of textiles and electronics. A group of e-textile designers willing to put a lot of work into this exchange all make 30 samples and these samples will be distributed at our meeting in Paillard, France.

Making a prototype is easy. Normally there are 3 – 5 versions necessary to have a finalized version which is presentable. But than making 30 copies is another business. You have to organize all the needed components (most of the time you have “some”, but not 30 and then find the same things like the knitting yarn, or the same conductive thread is sometimes even impossible!).

And e-textile designers are experimenters, so we like to change and always look for possible improvements. So making 30 identical copies is … stress!

In my production time there are three phases: the first phase is slow, because I really have to start the production, make it a bit “faster”, modular, more efficient. Then all stages are getting into my system and production is started. But in the last phase I have to be careful to stay concentrated, I get careless start thinking of other projects, and am likely to make stupid mistakes.

My swatch, after making the first prototype, is now divided into three production events:

knitting: knitting the envelop

electronics: making the tribo electric “battery” and connecting the rectifier bridge and the LED

linking: putting knitting and electronics together and close the envelop by linking.

These three production phases ask for different types of concentration. With the knitting the knitting machine – laptop combination must be working impeccably. I had a problem with the board (lobotomy of the KH-940). What was wrong with the board? In the end, after checking all the connections of this fragile board, it was the USB cable! Replacing the cable solved all connection problems. Who doubts his USB cable???? In this knitting phase eventually during production I make all possible mistakes. Forgetting the weights, reversing the cast of order, breaking threads, etc, etc, etc. With machine knitting you can make a lot of mistakes indeed!

The electronics are reduced, but still this can go wrong: in my first sample after linking the knitting (closing the envelop) a wire got detached. Good for the production: make sure the wires are very very very well connected, because the knitting will not facilitate soldering inside!

The linking can be done by hand, but as a hand stitcher it would take me another week…so a linker machine is used. Of course arriving at this linker at school it is out of production. First I had to repair it. But then things go smooth.

sw1

The 30 copies knitted, not linked yet.

Description of this swatch can be found here:http://etextile-summercamp.org/swatch-exchange/flash-knit/

All coming swatches can be seen here:http://etextile-summercamp.org/swatch-exchange/

E-textile summercamp 2015:http://etextile-summercamp.org/

sw2

Knitted at the KH-940

Screen Shot 2015-07-05 at 08.16.49

Knitting Pattern, for lace knit.

Victory over the Sun: Paillard 2015 version

This blog post serves as the documentation for the work on display at Paillard 2015.

vos1 vs1

Theme:

Energy Harvesting, game

Idea/concept:

Victory over the Sun is a dress which makes it possible to compare the use of several ways of generating energy. In this version the energy of a solar cell can be compared to the energy generated by rotating a hand crank. The amounts of energy for each source is played out to each other on this wearable. Varying circumstances, inside outside, shade, sun gives different results. Playing this game with this wearable is apropriate because it is easily displaced  in different situations, sun, shadow, twilight etc

Experience:

By playing the gameit becomes clear that it takes a lot of effort to generate an amount of energy to load the supercap, that the sun generates this energy effortlessly when it shines optimally on the solar cell, but that this solar cell is not always (most of the times not at all) in optimal placement when you run around in this dress.

Fabric:

The material used for this dress is pieces of worn out jeans which are still usable. This recycling of material fits the project concept of harvesting energy, that is using energy which is self generated or “left over”. In theory this using worn out material seems nice, but in practice worn out really means the fabric is weak even if you don’t notice it directly. It can be seen at several places that the fabric is very fragile.

Expression:

For the course of this energy game two verticals rows of bright LED’s are visible at the front of the dress. These lines of LED’s have a double indication. The main indication will an lit LED at the scale of the energy generated, the higher in the row the more energy, the second is another LED which uses the whole scale to indicate progress.

The second expressive behavior occurs after the game, in the discharging mode. The back light up in red and white and these colors fade gradually depending on the discharging rate.

Electronics:

vos2

Left to right: hand crank, supercaps, ATtiny85’s, LTC3105

The energy of the Sun is generated by a solar cell. For the hand crank is used a hacked Ljusa of IKEA. The energy of both sources is stored into two seperated 10F supercaps. Two ATtiny85 monitor the voltage in these supercaps. If the voltage in the supercaps stayes above the 5V a winning indication is flashed over the LED’s.

Then the energy is released. The first idea was using an LTC3105 energy harvesting chip to store the energy back into the lipo, charging the lipo.

The second idea was to use the bright Ljusa LED’s inside the back of the silhouet, so creating “a second” expressive behavior.

vs2   vs3

Presentation mode:

For the Paillard exhibition a special presentation mode is made. The electronics has got its own small shade lamps, and the front LED’s will be lit, simulating a game. After the simulated game the back will be lit as if the supercaps discharge.

Artistic Result:

Victory over the Sun is an artistic research result of a Design & Energy harvesting investigation: http://interactionstation.wdka.hro.nl/wiki/Research#Research:_Design_and_Energy_Harvesting

Other presentations:

Victory over the Sun was displayed at the Hochschule für Künste in Bremen in 2015.

Victory over the Sun will also be presented at the Willem de Kooning Academy in Rotterdam in octobre 2015.

Former posts about this project:

https://myfablab.wordpress.com/2015/04/06/victory-over-the-sun-version-1-0-energy-considerations/

https://myfablab.wordpress.com/2015/04/19/victory-over-the-sun-technical-testing/

First and Second sketch version:

https://myfablab.wordpress.com/2015/03/17/victory-over-the-sun-sketch-version/

Victory over the Sun: technical testing

The dress described in former posts was finished finally.

https://myfablab.wordpress.com/2015/04/06/victory-over-the-sun-version-1-0-energy-considerations/

The dress as a result of an artistic research into energy harvesting and design is presenting a game situation. By rotating a dynamo you have to compete with the Sun and a solar panel in generating energy. The game is created in a wearable so that you can change to another location. Playing the game in different locations makes you aware of the power of the Sun’s energy in comparison to your own muscle energy.

The dress is very much a prototype. As can be seen from the electronics a large amount of testing is needed to make some sort of a playable game.

The electronics was fitted inside 4 acrylic casings:

vos2

dynamo charger, supercaps/lipo, the brains: 2 ATtiny85’s and bitshifters, and an LTC3105 energy harvesting chip.

then fitted to the side of the dress: (which makes us aware that we should have thought of a better wiring 🙂

vos1

Up left: the charging dynamo, up right, the ATtiny85’s, and the bit shifters, down left, the supercaps, and lipo, then bottom right, the LTC3105 for recharging the discharged energy into the lipo.

After fitting the casings will be covered with small pieces of jeans, only the dynamo charger will be visible.

vos3

Two out of the three casings covered.

The choice for 2 ATtiny85’s was made from the first version where we had only 4 LED’s for the two sources of energy. But now after making it all we realized that the 2 ATtiny85 with the bit shifters should have been replaced by one ATmega328, with a LED-block script, avoiding the bit shifters. This would have saved one casing. This will be done in the next (third) version of the electronics.

Testing!

Besides the solar panel a battery pack is installed to make testing in a room without the Sun easier, you can test by switching to battery pack (right side, next to the solar panel). The wiring between all the casings and groups of electronics is done by female – male connectors. This makes testing easier.

vos5

The second version of the script discharged the supercaps after winning. Winning is reaching the 5V mark. But what about starting a new game after abandoning a game half way? It was decided to discharge the supercaps at the start, when you switch on. Discharging is not what is seems. Following the voltage of the supercaps to about 0V, you see the voltage rise again without any charging. So discharging is now done in steps, then some delay, then measure the voltage again, if it is above a limit, discharge another round and so on.

This repeated discharging worked…until the dress was put in the full sun. The solar panel is generating so much energy that the discharging is not fully obtained. The discharging time had to be made bigger.

The installed solar panel is doing 0.1V a second so it will win in 50 seconds if the Sun is not hindered by clouds. At the moment it is practically impossible to win this using this hand crank dynamo hacked from the Ljusa.

Besides that, as could have been expected 🙂 the big LED’s are not visibly on or off in the full Sun. Another interface should be added, or these LED’s like this removed and giving it a try with small superbright LED’s.

A movie of the solar panel racing towards the 5V:

http://youtu.be/AS1miVtdD00

After observing the problem of the LED’s not visibly lit in sunlight, we tested bright LED’s in a simple script at 3V:

http://youtu.be/GDRzv7O-mU0

So the big 10mm LED’s will be replaced by these 3mm bright LED’s.

Interactive top

Fot the presentation in Bremen we made a simple interactive piece for a possible fundraising auction.

The piece is made of five sided regular shapes. The fabric is lasercutted and the pattern of the the bigger form is coming back in the middle of the shape as a pattern.

From 6 regular five sided shapes a top is constructed in a way we did for 10 years in painting. The difference is that the fabric folds itself around the body, being different from 2D tessalation.

p1 Screen Shot 2015-04-19 at 10.12.19

(see more paintings here: http://www.contrechoc.com/pentagons/firstIdeas.htm)

One of the fabric shapes and some of the paintings in the same configuration as used for the top. Added are two basic shapes one to the right and one to left side. In painting this would have meant that the 2D plane was abandoned. For the textile top this means we get a spatial form slightly coming outwards.

Pattern of the top:

Screen Shot 2015-04-19 at 11.34.05

A picture of a model (Jasna Rokegem) wearing the top:

top1

For interactivite we added three LED’s in the middle of the sides of the central shape. These LED’s are soft glowing, faster or slower depending on the value read by a light sensor exactly at the middle of the protruding shape(LDR).

The nice thing about this top is that you can even hang it on the wall and enjoy its abstract reflections without wearing it yourself 🙂

Script
The script is fairly simple and can be found here:
version 1: glowing led’s:
https://codebender.cc/sketch:106005
version 2 (meant for the back): led’s shwoing light variations:
https://codebender.cc/sketch:106006
Both scripts can also be found at github:
https://github.com/contrechoc/wearable_top_script

Hardware:
Needed: ATtiny85, three LED’s, 1 resistor of 2K, 1 LDR, coin cell battery holder, 3V coin cell battery.

2015 NASA App Challenge

Two years ago we participated with friends in the 2013 NASA App Challenge with a wearable. Last year we did a game for the 2014 App Challenge. Now we do another wearable challenge in the 2015 NASA App Challenge: https://2015.spaceappschallenge.org/

This is the first time we really try to make “intelligent” garments. We will integrate a neural network in the wearable. This network will “learn” by trying to recognize patterns. This learning will be made visible by changing the shape of the wearable, or even morphing.

The neural network will be small, and the learning capacities will be very limited, but this is a start at “really (somehow) smart” fashion.

Details about this project can be found in this hackpad:

https://spaceapps.hackpad.com/Neural-network-Space-Fashion-cCVR3PzAqtf

images will follow next week when we try to finish two wearables in one weekend, where normally it takes about a month for a wearable…

But now we come with a group of expert programmers, designers and e-textilers, together with a car full of equipment…

(Making tags for this post … nearly all tags created for this blog are indicated, which means that something will be happening!)

Project page:

https://2015.spaceappschallenge.org/project/neural-network-space-fashion/

Supernova t-shirt with trousers

The t-shirt showing the sequence of observed supernovas of the first 6 month of 2014 was first shown at Paillard in the summer of 2014 during the exhibition Cuvée at Paillard.

https://myfablab.wordpress.com/2014/08/14/cuvee-e-textile-exhibition-in-ponce-sur-loir/

Recently trousers were added with all the data which are used engraved with a laser cutter on the fabric of the trousers.

The idea of adding the trouwers is to show the contrast between “raw data” – as text and number items,  and this way of visualising the data of a time sequence on a surface area.

So the supernova observations with coordinates and time and date indication are shown as blinks on the t-shirt and as text on the trousers.

In discussions it appeared that the meaning of the blue/green ellipse on the t-shirt is difficult to understand if you are not a little bit into astronomy. For most people it is possible to look at all the countries of the Earth mapped on one page in an atlas, but the idea that the whole sky is projected into one ellips is not easy. But of course this is the same transformation: the surface of a sphere is projected on a plane into an ellipse. We know that the Universe is “space”, but we percieve it as a sphere, because the distance of the objects in space is so large compared to what we as humans are used to.

This blue green ellipse on the t-shirt is a picture of the Microwave background radiation. This represents the distribution of mass just after the Big Bang (well 350.000 years according to the theories).

On top of this – or rather through this picture – are the observations of stars exploding in the universe. We can see these explosions which are really far away because for some time these stars are as bright as galaxies. So you get a comparison between stars exploding and the ancient mass distribution. Stars like that (very big compared to the our Sun) have a short life time (compared to our Sun). They will end in an explosion after about 10 million years. So these explosions are like leaves falling of a tree, the tree representing the universe. And of course these observations revealed that apparently the Universe is expanding in an accelerating way, indicating that the law of gravity is not the only long distance force…

Back to the wearable, some pictures, textual data on the trousers:

su3 su2 su1

The engraving, done with a laser cutter, is perforating the very light weight fabric, which is not really fabric for trousers, it was chosen more for having a nicely colored surface. (Next time, better fabrics!)

su4

Under the t-shirt is the electronics. Five big led panels are playing the part of exploding stars. The sky is divided into 5 big area’s, for the 5 panels.  The voltage used for the led panels is 12V provided by 3 lipo batteries in series.

su5

The datavisualisation as a time sequence can only bee seen in a movie:

http://youtu.be/baameBQPfxo

 

 

 

 

Je suis – project

From the “Je suis Charlie” quick hack (https://myfablab.wordpress.com/2015/01/11/je-suis-charlie/) after quite a lot of modifications, this post provides some documentation of the “Je suis” project.

The project name has changed from “Je suis Charlie” to “Je suis”. In the idea of defending our “sacred” European civilization by joining in with the public outcry around the events in Paris this Januari there are too many issues – if you think about it.

Engagement is tempting but in the end individuality and doubt get the upper hand. Do we defend our freedom of speech and cartoons by necessarily offending others? On the other hand do some killer madmans – probably with some brain defects – defend their civilization by taking a gun and shooting around? Neither seems likely.

je_suis

Therefore the essential “Je suis” is retained. This is an enormous shift in meaning!

Not the “I am because I think”, just the “I am”. Whatever that “I” is – whatever “being” is. Thinking closely to a text always dissolves the meaning. Individuality, supposedly developed during what we call the Renaissance is diminished paradoxically by all the “sharing” and copy pasting of the Web 2.0 and “social media” anyway.

Back to the project.

Temporarily showing “Je suis” is funny because this is the way thinking about individuality or the “I” works. Most of the time you just don’t think about it, sometimes it pops up. This voice inside our head, is it the “I”? And even when it is, why does it think it is different from  “the others”. Better? Worse? If the “I” pops up, it is only confusion. You seem to be “a thinker” if you state a blunt theory about this confusion, like “I think therefore I am” or “Sein und Zeit”. But how can just one voice inside a brain superimpose a static local idea on this evolving humanity of milliards of other voices?

The shift in meaning retained the idea of “content”, which is lacking most of the time in wearables. Combining design and interaction is already difficult enough!

So the “Je suis Charlie” flat 3D prints were replaced by “Je suis” 3D prints. In the middle the two hands, reference to the hands of Michelangelo…but in an 8 bit version! Which seems appropriate for our primitive understanding of the “I” and being.

The cord and the clips were discarded. The clips provided weight, needed for getting the plates down again. With just a cord the plates where not pulled down. The solution was to use a string of beads. This necklace is also a “normal” accessoire used in combination with this type of dress.

To pull the plates up, some mechanical problems ad to be solved. The part had to be attached to the dress to give it a rotation point – there was a black slip providing for the necessary frimness under the fragile upper layer of this party dress. And there had to be some distance from the end of the plate that is to be lifted to get an “arm” to work with. This was done with a small part 3D printed:

Screen Shot 2015-03-22 at 16.04.29

The angle to the horizontal and the grip on the beads of the neacklace proved essential for a proper lifting.

At the back the electronic was fitted to an acrylic transarent plate with two holders over the shoulders: (this part will be renewed by a shape done with the lasercutter)

2015-03-22 15.28.28

The electronics remained the same, there is a distance sensor which triggers lift of the plates by a stepper motor at the back. For presentations there is a special button for immediate action.

The beads were making the lifting a big job for the steppermotor, so the voltage for this motor was increased to 7.5V, two lipo’s in series. The AT328 is protected by a 3.3V Voltage regulator.

Most of the wearables hide the electronics. In this project about “je suis” it seems right to show the electronics, although on the back. You can watch the stepper motor pull physically at a cord to reveal the “content”.

A small demo movie sketch can be found here:

http://youtu.be/KB-T2YPOPfY

2015-03-22 14.48.02

Victory over the Sun – (sketch version)

(see http://etextile-summercamp.org/2015/victory-over-the-sun/ for a more advanced version)

Intro
This wearable is part of a research into energy harvesting, which can be found here:
http://83.160.137.124/wordpress/wordpress/ (Slow Raspberry pi server!)
The purpose of this wearable is to compare two sources of energy, not just showing a charging wearable.

Title
The title of this project has changed a few times:

  • 1. Not another solar dress
  • 2. Energy battle dress
  • 3. Victory over the Sun

The first title is indicating that this project is not another mobile phone charging wearable. There is a solar panel, but also a hand crank device in the dress. But it is not about charging anything, because charging from a wearable is anyhow not very efficient.

The second title is indicating that the purpose of this wearable is comparing two sources of energy together in a game. The two source compete against each other. Which one will win? The solar energy or the muscular energy?

The third title is a reference to the oper of the Russian avant garde in the Bauhaus time:
http://en.wikipedia.org/wiki/Victory_over_the_Sun
Malevich and El Lissitzky made this oper famous, contributing to the stage design and the graphical displays.

There is some sarcasm in this third title, because it is rather impossible to win from the Sun in this game, only at night you have a chance, the solar panel is even charging slowly in normal daylight without direct sunlight.

Materials:
Appropriately for the material old discarded jeans are chosen. Thus the material is recycled. The wearable is a simple dress with possibilities to add panels and the hacked Ljusa hand crank.

Design:
From the parts of jeans which were not totally worn out pieces were cut and these pieces were sewn together. An interesting folding problem popped up which will be described in another post.

Picture of the wearable in progress: (The hacked Ljusa, with the white card board and the red crank will be redesigned and more properly inserted into the wearable of course)

http://83.160.137.124/wordpress/wordpress/preparing-the-course-hacked-gadget-ljusa/

2015-03-12 07.51.57#1

Wearable made of recycled jeans material.

Electronics.
For the hand crank I have chosen the Ljusa of IKEA, which is a toy generating some power. It stores the power too in a 1.5F supercap. The second source of energy is a solar panel. Added to this is also a 1.5F supercap. With a ATtiny85 and 8 big LED’s – 4 LED’s for each energy source – the winning source can be made visible.

The electronics idea was to show the current Voltage for the two sources in two rows of 4 LED’s. The microcontroller which can just be used is a ATtiny85. Two analog PIN’s and two PIN’s for a multiplexer chip. One PIN is left for one other purpose.

Although the sources are generating energy, there has to be another energy source for the microcontroller at the moment. It would be an nice idea to have the sources (solar and muscle) first generate enough energy for the game to start, but this has to be figured out yet.

The third energy source is a rechargeable lipo battery.
Then there has to be a discharge for the game to restart. This is done using a FRT5 DC5 relay.

The number of difficulties in the electronics were plenty: besides the usual stupid mistakes like connected the LED’s the wrong way there were a few real “Zen master” problems (which means you have to learn something besides correcting stupid mistakes).

The ATtiny85 uses USI instead of SPI, code for this was found at:
https://github.com/JChristensen/tinySPI/blob/master/tinySPI.cpp

Then the implementation of the use of the analog PIN’s proved time consuming. In the end the soution was found in connecting the PIN’s to the GND using a 1M Ohm resistor.

Then the coding of the LED’s, in two groups of 4 inside the bigger group of 8 was proving not straightforward. Apparently the number read using the ADC code is not a “normal” INT number and you cannot use all math available, like subtracting 512 from the value read between 0 and 1024.

The final code can be found here:
https://codebender.cc/sketch:94401

Testing pictures of the electronics:
Testing is better down as much as possible outside the wearable. In the end the electronics is on the board and the ATtiny85 had to be removed and placed in the programmer breadboard way too often again, I could have better soldered programming the wires to the board right away…

  • testing first the ATtiny85 and multiplexer on a breadboard
  • testing the LED’s on a piece of jeans
  • the PCB with the supercap, multiplexer, relais and ATtiny85

2015-03-16 08.09.00 2015-03-16 11.18.50

2015-03-17 10.38.49

Remarks about the PCB:

  • One relais too much, two components right upper side FRT5!
  • At the left side the two energy sources can be connected.
  • The green component is the 1.0F 5.5V supercap
  • The Ljusa has it’s own supercap (storing energy), the solar panel uses the supercap (green thing) on the board.
  • Middle under, ATtiny85, left under hd74ls164p shift register
  • The PCB can be redesigned more efficiently!